6653 Learn C++ Arrays: Tutorials, Examples, and Practices|Q3 Schools


Home Python C Language C ++ HTML 5 CSS Javascript Java Kotlin SQL DJango Bootstrap React.js R C# PHP ASP.Net Numpy Dart Pandas Digital Marketing

Polynomial Regression



Polynomial Regression

If your data points clearly will not fit a linear regression (a straight line through all data points), it might be ideal for polynomial regression.

Polynomial regression, like linear regression, uses the relationship between the variables x and y to find the best way to draw a line through the data points.


How Does it Work?

Python has methods for finding a relationship between data-points and to draw a line of polynomial regression. We will show you how to use these methods instead of going through the mathematic formula.
In the example below, we have registered 18 cars as they were passing a certain tollbooth.

We have registered the car's speed, and the time of day (hour) the passing occurred.

The x-axis represents the hours of the day and the y-axis represents the speed:


Example
Start by drawing a scatter plot:
import matplotlib.pyplot as plt:

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

plt.scatter(x, y)
plt.show()


Example
Import numpy and matplotlib then draw the line of Polynomial Regression:
import numpy
import matplotlib.pyplot as plt

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

myline = numpy.linspace(1, 22, 100)

plt.scatter(x, y)
plt.plot(myline, mymodel(myline))
plt.show()


Example Explained

Import the modules you need.

import numpy
import matplotlib.pyplot as plt

Create the arrays that represent the values of the x and y axis:

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

NumPy has a method that lets us make a polynomial model:

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

Then specify how the line will display, we start at position 1, and end at position 22:

myline = numpy.linspace(1, 22, 100)

Draw the original scatter plot:

plt.scatter(x, y)

Draw the line of polynomial regression:

plt.plot(myline, mymodel(myline))

Display the diagram:

plt.show()

R-Squared

It is important to know how well the relationship between the values of the x- and y-axis is, if there are no relationship the polynomial regression can not be used to predict anything.
The relationship is measured with a value called the r-squared.

The r-squared value ranges from 0 to 1, where 0 means no relationship, and 1 means 100% related.
Python and the Sklearn module will compute this value for you, all you have to do is feed it with the x and y arrays:

Example
How well does my data fit in a polynomial regression?
import numpy
from sklearn.metrics import r2_score

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

print(r2_score(y, mymodel(x)))



Advertisement





Q3 Schools : India


Online Complier

HTML 5

Python

java

C++

C

JavaScript

Website Development

HTML

CSS

JavaScript

Python

SQL

Campus Learning

C

C#

java