Home Python C Language C ++ HTML 5 CSS Javascript Java Kotlin SQL DJango Bootstrap React.js R C# PHP ASP.Net Numpy Dart Pandas Digital Marketing

ufunc create function


Using numpy.frompyfunc(): You can create a ufunc from any Python function using numpy.frompyfunc(). This function takes a Python function as input and returns a ufunc that can operate element-wise on NumPy arrays.

import numpy as np
# Define a custom Python function
def custom_func(x):
return x ** 2 + 2 * x + 1
# Create a ufunc from the custom function
custom_ufunc = np.frompyfunc(custom_func, 1, 1)
# Test the ufunc with a NumPy array
arr = np.array([1, 2, 3, 4, 5])
result = custom_ufunc(arr)
print(result) # Output: [ 4 9 16 25 36]


Using numpy.vectorize() : Alternatively, you can use the numpy.vectorize() decorator to create a vectorized function, which behaves similarly to a ufunc.

import numpy as np
# Define a custom Python function
def custom_func(x):
return x ** 2 + 2 * x + 1
# Create a vectorized function from the custom function
custom_ufunc = np.vectorize(custom_func)
# Test the vectorized function with a NumPy array
arr = np.array([1, 2, 3, 4, 5])
result = custom_ufunc(arr)
print(result) # Output: [ 4 9 16 25 36]


Both methods allow you to create custom ufuncs from Python functions. Using custom ufuncs can be useful for extending NumPy's functionality with custom operations tailored to your specific needs.





Advertisement





Q3 Schools : India


Online Complier

HTML 5

Python

java

C++

C

JavaScript

Website Development

HTML

CSS

JavaScript

Python

SQL

Campus Learning

C

C#

java