Home Python C Language C ++ HTML 5 CSS Javascript Java Kotlin SQL DJango Bootstrap React.js R C# PHP ASP.Net Numpy Dart Pandas Digital Marketing

Matplotlib Line



Creating line plots with Matplotlib is a fundamental way to visualize data in Python. Line plots are useful for displaying trends over time or relationships between variables. Here’s how you can create and customize line plots using Matplotlib.

Basic Line Plot

To create a basic line plot, you can use the plot() function. Here’s an example:



        import matplotlib.pyplot as plt
        import numpy as np
        
        # Creating data
        x = np.linspace(0, 10, 100)
        y = np.sin(x)
        
        # Creating a figure and an axes
        fig, ax = plt.subplots()
        
        # Plotting data
        ax.plot(x, y)
        
        # Adding title and labels
        ax.set_title('Sine Wave')
        ax.set_xlabel('X-axis')
        ax.set_ylabel('Y-axis')
        
        # Showing the plot
        plt.show()
        
      

Customizing Line Plots

You can customize the appearance of your line plot by modifying the line style, color, markers, and more.

Changing Line Style and Color

You can specify the line style and color using the linestyle and color parameters.



        # Changing line style and color
        ax.plot(x, y, linestyle='--', color='red')
      

Adding Markers

Markers can be added to highlight data points using the marker parameter.



        # Adding markers
        ax.plot(x, y, marker='o', linestyle='-', color='blue')
      

Complete Example with Customizations

Here’s a complete example with various customizations:



        import matplotlib.pyplot as plt
        import numpy as np
        
        # Creating data
        x = np.linspace(0, 10, 100)
        y = np.sin(x)
        
        # Creating a figure and an axes
        fig, ax = plt.subplots()
        
        # Plotting data with customizations
        ax.plot(x, y, linestyle='--', color='red', marker='o', markersize=5, markerfacecolor='blue')
        
        # Adding title and labels
        ax.set_title('Customized Sine Wave')
        ax.set_xlabel('X-axis')
        ax.set_ylabel('Y-axis')
        
        # Showing the plot
        plt.show()
        
      

Plotting Multiple Lines

You can plot multiple lines on the same axes by calling the plot() function multiple times.

Example with Multiple Lines


         
        import matplotlib.pyplot as plt
        import numpy as np
        
        # Creating data
        x = np.linspace(0, 10, 100)
        y1 = np.sin(x)
        y2 = np.cos(x)
        
        # Creating a figure and an axes
        fig, ax = plt.subplots()
        
        # Plotting multiple lines
        ax.plot(x, y1, label='Sine Wave')
        ax.plot(x, y2, label='Cosine Wave', linestyle='--')
        
        # Adding title, labels, and legend
        ax.set_title('Sine and Cosine Waves')
        ax.set_xlabel('X-axis')
        ax.set_ylabel('Y-axis')
        ax.legend()
        
        # Showing the plot
        plt.show()
        
      

Adding Grid Lines

Grid lines can be added to the plot to improve readability.



        # Adding grid lines
        ax.grid(True)
      

Example with Grid Lines

Here’s an example that includes grid lines:


        import matplotlib.pyplot as plt
        import numpy as np
        
        # Creating data
        x = np.linspace(0, 10, 100)
        y = np.sin(x)
        
        # Creating a figure and an axes
        fig, ax = plt.subplots()
        
        # Plotting data with grid lines
        ax.plot(x, y, linestyle='-', color='green')
        ax.grid(True)
        
        # Adding title and labels
        ax.set_title('Sine Wave with Grid Lines')
        ax.set_xlabel('X-axis')
        ax.set_ylabel('Y-axis')
        
        # Showing the plot
        plt.show()
        
      

Adjusting Plot Limits

You can set the limits for the x-axis and y-axis using the set_xlim() and set_ylim() methods.



        # Adjusting plot limits
        ax.set_xlim([0, 12])
        ax.set_ylim([-2, 2])
      

Example with Adjusted Limits

Here’s an example with adjusted plot limits:



        import matplotlib.pyplot as plt
        import numpy as np
        
        # Creating data
        x = np.linspace(0, 10, 100)
        y = np.sin(x)
        
        # Creating a figure and an axes
        fig, ax = plt.subplots()
        
        # Plotting data with adjusted limits
        ax.plot(x, y, linestyle='-', color='purple')
        ax.set_xlim([0, 12])
        ax.set_ylim([-2, 2])
        
        # Adding title and labels
        ax.set_title('Sine Wave with Adjusted Limits')
        ax.set_xlabel('X-axis')
        ax.set_ylabel('Y-axis')
        
        # Showing the plot
        plt.show()
        
      

Annotating Points

You can add annotations to highlight specific points in your plot using the annotate() function.



        # Annotating points
        ax.annotate('max point', xy=(np.pi/2, 1), xytext=(np.pi/2 + 1, 1.5),
                    arrowprops=dict(facecolor='black', shrink=0.05))
      

Example with Annotations

Here’s a complete example with an annotation:



        import matplotlib.pyplot as plt
        import numpy as np
        
        # Creating data
        x = np.linspace(0, 10, 100)
        y = np.sin(x)
        
        # Creating a figure and an axes
        fig, ax = plt.subplots()
        
        # Plotting data with annotation
        ax.plot(x, y, linestyle='-', color='orange')
        ax.annotate('max point', xy=(np.pi/2, 1), xytext=(np.pi/2 + 1, 1.5),
                    arrowprops=dict(facecolor='black', shrink=0.05))
        
        # Adding title and labels
        ax.set_title('Sine Wave with Annotation')
        ax.set_xlabel('X-axis')
        ax.set_ylabel('Y-axis')
        
        # Showing the plot
        plt.show()
        
      

These examples should give you a good understanding of how to create and customize line plots using Matplotlib. Feel free to adjust the parameters and styles to best suit your data visualization needs. If you have any specific questions or need further examples, let me know!






Advertisement





Q3 Schools : India


Online Complier

HTML 5

Python

Zava

C++

C

JavaScript

Website Development

HTML

CSS

JavaScript

Python

SQL

Campus Learning

C

C#

Zava