Home Python C Language C ++ HTML 5 CSS Javascript Java Kotlin SQL DJango Bootstrap React.js R C# PHP ASP.Net Numpy Dart Pandas Digital Marketing

SciPy Interpolation


What is SciPy Interpolation?

Interpolation is the process of estimating unknown values that fall between known values. SciPy's interpolate module provides several methods for interpolation.


Example: Linear Interpolation

  1. Create Sample Data: We'll create some sample data points that we want to interpolate between.

  2. Interpolate the Data: We'll use scipy.interpolate.interp1d to create an interpolation function.

  3. Plot the Results: We'll use matplotlib to visualize the original data points and the interpolated values.

Step-by-Step Example


python
                        import numpy as np
                        from scipy.interpolate import interp1d
                        import matplotlib.pyplot as plt

                        # Step 1: Create sample data
                        x = np.linspace(0, 10, num=11, endpoint=True)  # 11 points from 0 to 10
                        y = np.cos(-x**2/9.0)  # Some function of x

                        # Step 2: Create an interpolation function
                        f_linear = interp1d(x, y)

                        # Interpolating with more points for a smoother curve
                        x_new = np.linspace(0, 10, num=100, endpoint=True)
                        y_new = f_linear(x_new)

                        # Step 3: Plot the results
                        plt.figure(figsize=(8, 4))
                        plt.plot(x, y, 'o', label='Original data points')
                        plt.plot(x_new, y_new, '-', label='Linear interpolation')
                        plt.xlabel('x')
                        plt.ylabel('y')
                        plt.legend(loc='best')
                        plt.title('Linear Interpolation using scipy.interpolate.interp1d')
                        plt.show()

                    

Explanation

  1. Creating Sample Data:

    • x is an array of 11 evenly spaced points from 0 to 10.
    • y is an array of cosine values of -x^2/9.0.
  2. Creating an Interpolation Function:

    • interp1d(x, y) creates a linear interpolation function f_linear based on the original data points.
  3. Interpolating and Plotting:

    • x_new is an array of 100 evenly spaced points from 0 to 10 for a smoother interpolation curve.
    • y_new is the interpolated values at the points in x_new.
    • We plot the original data points and the interpolated values for comparison.

Output

When you run the above code, you'll get a plot showing the original data points and the interpolated curve:

 

This plot demonstrates how linear interpolation can estimate values between the known data points, resulting in a smooth curve that approximates the underlying function.

Additional Interpolation Methods

SciPy also supports other interpolation methods such as cubic interpolation (kind='cubic') and nearest-neighbor interpolation (kind='nearest'). You can specify the interpolation method when creating the interpolation function:


python
                        f_cubic = interp1d(x, y, kind='cubic')
                        y_new_cubic = f_cubic(x_new)

                        plt.plot(x_new, y_new_cubic, '--', label='Cubic interpolation')
                        plt.legend(loc='best')
                        plt.show()

                    

This will create and plot a cubic interpolation, which can provide a smoother curve than linear interpolation.





Advertisement





Q3 Schools : India


Online Complier

HTML 5

Python

java

C++

C

JavaScript

Website Development

HTML

CSS

JavaScript

Python

SQL

Campus Learning

C

C#

java