Home Python C Language C ++ HTML 5 CSS Javascript Java Kotlin SQL DJango Bootstrap React.js R C# PHP ASP.Net Numpy Dart Pandas Digital Marketing

Creating Arrays and Array Operations Using NumPy in Python


NumPy (Numerical Python) is a powerful library in Python used for numerical computations. It provides support for arrays, matrices, and a wide range of mathematical operations. In this article, we'll explore how to create arrays and perform various operations on them using NumPy.

Installing NumPy

Before using NumPy, you need to install it. You can do so using pip:

pip install numpy

Creating Arrays in NumPy

NumPy arrays can be created in several ways, including from lists, using built-in functions, or random values.

1. Creating Arrays from Lists

    import numpy as np

    # Creating a 1D array
    array_1d = np.array([1, 2, 3, 4, 5])
    print("1D Array:", array_1d)

    # Creating a 2D array
    array_2d = np.array([[1, 2, 3], [4, 5, 6]])
    print("2D Array:\n", array_2d)
        

2. Creating Arrays Using Built-in Functions

    # Creating an array of zeros
    zeros_array = np.zeros((2, 3))
    print("Array of Zeros:\n", zeros_array)

    # Creating an array of ones
    ones_array = np.ones((3, 3))
    print("Array of Ones:\n", ones_array)

    # Creating an array with a range of values
    range_array = np.arange(1, 10, 2)
    print("Array with Range:\n", range_array)

    # Creating an array with evenly spaced values
    linspace_array = np.linspace(0, 1, 5)
    print("Array with Linspace:\n", linspace_array)
        

3. Creating Arrays with Random Values

    # Creating an array with random values
    random_array = np.random.rand(3, 3)
    print("Random Array:\n", random_array)

    # Creating an array with random integers
    random_int_array = np.random.randint(1, 10, size=(2, 3))
    print("Random Integer Array:\n", random_int_array)
        

Array Operations in NumPy

NumPy provides a wide range of operations to manipulate and perform computations on arrays.

1. Basic Arithmetic Operations

    # Adding arrays
    array1 = np.array([1, 2, 3])
    array2 = np.array([4, 5, 6])
    sum_array = array1 + array2
    print("Sum of Arrays:", sum_array)

    # Multiplying arrays
    product_array = array1 * array2
    print("Product of Arrays:", product_array)

    # Scalar operations
    scalar_add = array1 + 10
    print("Add Scalar to Array:", scalar_add)
        

2. Matrix Operations

    # Matrix multiplication
    matrix1 = np.array([[1, 2], [3, 4]])
    matrix2 = np.array([[5, 6], [7, 8]])
    matrix_product = np.dot(matrix1, matrix2)
    print("Matrix Product:\n", matrix_product)
        

3. Statistical Operations

    array = np.array([1, 2, 3, 4, 5])

    # Mean of array
    mean_value = np.mean(array)
    print("Mean:", mean_value)

    # Maximum and minimum values
    max_value = np.max(array)
    min_value = np.min(array)
    print("Max:", max_value, "Min:", min_value)

    # Sum of all elements
    sum_value = np.sum(array)
    print("Sum:", sum_value)
        

4. Reshaping and Transposing Arrays

    # Reshaping an array
    array = np.array([1, 2, 3, 4, 5, 6])
    reshaped_array = array.reshape(2, 3)
    print("Reshaped Array:\n", reshaped_array)

    # Transposing a 2D array
    array_2d = np.array([[1, 2, 3], [4, 5, 6]])
    transposed_array = array_2d.T
    print("Transposed Array:\n", transposed_array)
        

Conclusion

NumPy is an essential library for numerical and scientific computing in Python. It simplifies the creation and manipulation of arrays and provides powerful tools for performing mathematical operations. By mastering NumPy, you can efficiently handle and process large datasets, making it a valuable skill for data analysis and machine learning.



Advertisement





Q3 Schools : India


Online Complier

HTML 5

Python

java

C++

C

JavaScript

Website Development

HTML

CSS

JavaScript

Python

SQL

Campus Learning

C

C#

java